Magnetic field around the screened three-phase high-current busducts

Tomasz Szczegielniak, Zygmunt Piątek, Dariusz Kusiak
Częstochowa University of Technology
42–200 Częstochowa, ul. Brzeźnicka 60a, e-mail: zygmunt.piatek@interia.pl,
dariuszkusiak@wp.pl, szczegielniak@interia.pl

This paper presents an analytical method for determining the magnetic field in the three-phase gas-insulated transmission line (i.e., high-current busduct) of circular cross-section geometry. The mathematical model takes into account the skin effect and the proximity effects, as well as the complete electromagnetic coupling between phase conductors and enclosures (i.e., screens). Apart from analytical calculation, computer simulations for high-current busduct system magnetic field were also performed with the aid of the commercial FEMM software, using two-dimensional finite elements.

KEYWORDS: high-current busduct, magnetic field, FEMM

1. Introduction

Today high-current busducts are applied in many projects around the world when high-power transmission of high reliability and maximum availability is required. The sizes of new projects are constantly increasing: from some hundred meters to several kilometers [1–10]. In today realizations of high-current transmission lines, we can usually see separate enclosures for each phase (Fig. 1).

Fig. 1. Three-phase high-current busduct with isolated phases [11]

High-current busducts generate extremely low frequency magnetic field, which can cause disturbances in nearby computers and some other electrical,
electronic and digital devices. Power distribution three-phase busbar systems are one of the main sources of magnetic field at industrial frequency, and can generate electromagnetic interference by inductive coupling. Moreover, the presence of a low frequency magnetic field, generated by power busbars, may produce some undesirable effect on human health [9, 10]. Thus, a correct prediction of the magnetic field generated by high current bus ducts is very important.

Magnetic field around high-current busducts depends on value of currents, but for the large cross-sectional dimensions of the phase conductor, even for industrial frequency, skin, external and internal proximity effects should be taken into account [1–7].

2. Magnetic field around three-phase high-current busduct with isolated phases

2.1. Magnetic field in the external area of the phase L_1

Let us consider the magnetic field in the screens of the flat three phase high current busduct presented in the Fig. 2.

Using the Laplace’s and Helmoltz’s equations we can determine the magnetic field in the conductors and the screens for the three-phase high-current busducts [1–7].

The total magnetic field in the external area of the phase L_1 has a form:

$$H_{\text{ext}}^{\text{ext}}(\mathbf{r}, \Theta, z) = H_{11}^{\text{ext}}(r, \Theta) + H_{12}^{\text{ext}}(r, \Theta) + H_{13}^{\text{ext}}(r, \Theta) = 1, H_{10}^{\text{ext}}(r, \Theta) + 1_d H_{1d}^{\text{ext}}(r, \Theta)$$ (1)
Magnetic field generated by current \(I_1 \) is
\[
H_{z1}(r) = I_1 H_{z1}^{1\theta}(r)
\]
where
\[
H_{z1}^{1\theta}(r) = \frac{I_1}{2\pi r}
\]
But magnetic field generated by \(I_2 \) is defined by formula
\[
H_{z2}^{1\theta}(r) = H_{z1}^{1\theta}(r,\Theta) + H_{z1}^{\text{ow}}(r,\Theta)
\]
in which magnetic field \(H_{z1}^{1\theta}(r,\Theta) \) has two components, so
\[
H_{z1}^w(r,\Theta) = 1, H_{z2}^w(r,\Theta) + 1, H_{z1}^{1\theta}(r,\Theta)
\]
where radial components has a form
\[
H_{z1}^w(r,\Theta) = -\frac{l_2}{2\pi r} \sum_{n=1}^{\infty} \left(\frac{r}{d} \right)^n \sin n\Theta
\]
and tangent component
\[
H_{z2}^w(r,\Theta) = -\frac{l_2}{2\pi r} \sum_{n=1}^{\infty} \left(\frac{r}{d} \right)^n \cos n\Theta
\]
Magnetic field \(H_{z1}^{1\theta}(r,\Theta) \) in the formula (3), is a so-called reverse reaction magnetic field, generated by current \(I_2 \). This field has two components, radial component is:
\[
H_{z1}^{1\theta}(r,\Theta) = \frac{l_2}{L_1 R_1} \sum_{n=1}^{\infty} \left(\frac{R_1}{r} \right)^n \left(\frac{R_4}{d} \right)^n d_m \sin n\Theta
\]
and tangent component
\[
H_{z2}^{1\theta}(r,\Theta) = -\frac{l_2}{2\pi R_1} \sum_{n=1}^{\infty} \left(\frac{R_1}{r} \right)^n \left(\frac{R_4}{d} \right)^n d_m \cos n\Theta
\]
where
\[
d_m = I_n^{-1}(\Gamma R_4) K_{n+1}(\Gamma R_4) I_{n+1}(\Gamma R_4) - I_n(\Gamma R_4) K_{n+1}(\Gamma R_4)
\]
and
\[
\sum = -n R_3 R_4 K_n(\Gamma R_4) \left[I_{n+1}(\Gamma R_4) + I_{n+1}(\Gamma R_4) \right] +
+ n \left[2 I_{n+1}(\Gamma R_4) K_n(\Gamma R_4) + I_n(\Gamma R_4) \left[K_{n+1}(\Gamma R_4) + K_{n+1}(\Gamma R_4) \right] + \right]
+ \Gamma R_3 I_{n+1}(\Gamma R_4) K_{n+1}(\Gamma R_4) - I_{n+1}(\Gamma R_4) K_{n+1}(\Gamma R_4)
\]
In the above formulas \(K_n(\Gamma R) \), \(I_{n+1}(\Gamma R) \), \(K_{n+1}(\Gamma R) \), \(I_{n+1}(\Gamma R) \) and \(K_{n+1}(\Gamma R) \) are modified Bessel’s functions, \(n, n-1 \) and \(n+1 \) order, calculated for \(r = R_4 \) and \(r = R_4 \), and the complex propagation constant of electromagnetic wave in the conductive material equals
The magnetic field in the external area of the phase L_2 has a form

$$
\mathbf{H}_{22w}(r, \Theta) = \mathbf{H}_{22w}(r, \Theta) + \mathbf{H}_{22w}(r, \Theta)
$$

(10)

The magnetic field generated by current I_2 is

$$
\mathbf{H}_{22w}(r) = 1 \mathbf{H}_{22w}(r)
$$

(11)
where

\[H_{22a}^{\text{ew}}(r) = \frac{I_2}{2\pi r} \]

\[(11a) \]

Magnetic field generated by current \(I_1 \) has a form

\[H_{21a}^{\text{ew}}(r, \Theta) = 1, H_{21b}^{\text{ew}}(r, \Theta) + 1_n H_{21\Theta}^{\text{ew}}(r, \Theta) \]

\[(12) \]

where components take the following forms

\[H_{21a}^{\text{ew}}(r, \Theta) = -\frac{I_1}{2\pi r} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{r}{d} \right)^n - \frac{1}{\Gamma R_s} \left(\frac{R_s}{r} \right)^n \left(\frac{R_s}{d} \right)^n \frac{s_{a, n}}{d_{a, n}} \right] \sin n\Theta \]

\[(12a) \]

and

\[H_{21b}^{\text{ew}}(r, \Theta) = -\frac{I_1}{2\pi r} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{r}{d} \right)^n + \frac{1}{\Gamma R_s} \left(\frac{R_s}{r} \right)^n \left(\frac{R_s}{d} \right)^n \frac{s_{a, n}}{d_{a, n}} \right] \cos n\Theta \]

\[(12b) \]

Whereas the magnetic field generated by current \(I_3 \) is defined by formula

\[H_{23}^{\text{ew}}(r, \Theta) = 1, H_{23a}^{\text{ew}}(r, \Theta) + 1_n H_{23\Theta}^{\text{ew}}(r, \Theta) \]

\[(13) \]

in which the radial component takes the following form

\[H_{23a}^{\text{ew}}(r, \Theta) = -\frac{I_3}{2\pi r} \sum_{n=1}^{\infty} \left[\left(\frac{r}{d} \right)^n - \frac{1}{\Gamma R_s} \left(\frac{R_s}{r} \right)^n \left(\frac{R_s}{d} \right)^n \frac{s_{a, n}}{d_{a, n}} \right] \sin n\Theta \]

\[(13a) \]

while the tangent component is

\[H_{23b}^{\text{ew}}(r, \Theta) = -\frac{I_3}{2\pi r} \sum_{n=1}^{\infty} \left[\left(\frac{r}{d} \right)^n + \frac{1}{\Gamma R_s} \left(\frac{R_s}{r} \right)^n \left(\frac{R_s}{d} \right)^n \frac{s_{a, n}}{d_{a, n}} \right] \cos n\Theta \]

\[(13b) \]

2.3. Magnetic field in the external area of the phase \(L_3 \)

The total magnetic field in the external area of the phase \(L_3 \) has a form:

\[H_{33}^{\text{ew}}(r, \Theta) = H_{33a}^{\text{ew}}(r) + H_{32}^{\text{ew}}(r, \Theta) + H_{31}^{\text{ew}}(r, \Theta) = 1, H_{31}^{\text{ew}}(r, \Theta) + 1_n H_{31\Theta}^{\text{ew}}(r, \Theta) \]

\[(14) \]

Magnetic field generated by current \(I_3 \) is

\[H_{33}^{\text{ew}}(r) = 1_n H_{33\Theta}^{\text{ew}}(r) \]

\[(15) \]

where

\[H_{33\Theta}^{\text{ew}}(r) = \frac{I_3}{2\pi r} \]

\[(15a) \]

Magnetic field generated by current \(I_2 \) has a form

\[H_{32}^{\text{ew}}(r, \Theta) = 1, H_{32a}^{\text{ew}}(r, \Theta) + 1_n H_{32\Theta}^{\text{ew}}(r, \Theta) \]

\[(16) \]

where components take the following forms.
\[H_{3\alpha}^{\text{ew}}(r, \Theta) = -\frac{l_3}{2\pi r} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{r}{d} \right)^n - 1 \right] \left(\frac{R_1}{r} \right)^n \left(\frac{R_4}{d} \right) \frac{s_{\alpha}}{d_{\alpha}} \sin n\Theta \] \quad (17a)

and

\[H_{3\beta}^{\text{ew}}(r, \Theta) = -\frac{l_3}{2\pi r} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{r}{d} \right)^n + 1 \right] \left(\frac{R_1}{r} \right)^n \left(\frac{R_4}{d} \right) \frac{s_{\alpha}}{d_{\alpha}} \cos n\Theta \] \quad (17b)

Whereas the magnetic field generated by current \(I_1 \) is defined by formula

\[H_{3\alpha}^{\text{ew}}(r, \Theta) = l_1, H_{3\beta}^{\text{ew}}(r, \Theta) + l_3 H_{3\beta}^{\text{ew}}(r, \Theta) \] \quad (18)

in which the radial component takes the following form

\[H_{3\alpha}^{\text{ew}}(r, \Theta) = -\frac{l_3}{2\pi r} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{r}{2d} \right)^n - 1 \right] \left(\frac{R_1}{r} \right)^n \left(\frac{R_4}{2d} \right) \frac{s_{\alpha}}{d_{\alpha}} \sin n\Theta \] \quad (18a)

while the tangent component

\[H_{3\beta}^{\text{ew}}(r, \Theta) = -\frac{l_3}{2\pi r} \sum_{n=1}^{\infty} (-1)^n \left[\left(\frac{r}{2d} \right)^n + 1 \right] \left(\frac{R_1}{r} \right)^n \left(\frac{R_4}{2d} \right) \frac{s_{\alpha}}{d_{\alpha}} \cos n\Theta \] \quad (18b)

3. Numerical example

Based on the derived formulae, the magnetic field in the high-current busduct depicted in figure 2 were calculated. Calculations were made for high-current busduct produced by Electrobudowa SA (for model ELPE–36/15 [13]). According to the notation applied in figure 2, the following geometry of the busduct has been selected: \(R_1 = 0.236 \text{ m}, R_2 = 0.25 \text{ m}, R_3 = 0.594 \text{ m}, R_4 = 0.6 \text{ m}, d = 1.8 \text{ m}. \) Both the phase conductors and the screens are made of aluminium, which has an electric conductivity of \(\gamma = 35 \text{ MS}^{-1}. \) The frequency is 50 Hz. Currents in the phase conductors are

\[I_1 = 15000\exp[-j0] \text{ A}, \quad I_2 = 15000\exp[-j\frac{2}{3} \pi] \text{ A}, \quad I_3 = 15000\exp[j\frac{2}{3} \pi] \text{ A}. \]

The results of the analytical calculations of the magnetic field around the ELPE high-current busduct are presented in the Figure 3.

Apart from analytical calculation, computer simulations for high-current busduct the magnetic field were also performed with the aid of the commercial FEMM software [12]. The magnetic field distribution around ELPE high-current busduct is presented in the Figure 4.

For comparative purposes, the magnetic field along the sections A, B, C, D, presented in the Figure 5, was calculated.
Fig. 3. Magnetic field distribution for ELPE high current busduct (red line: $r = R_4$, green line: $r = R_4 + 0.15$, blue line: $r = R_4 + 0.3$).

$r = R_4 + 0.15$, blue line: $r = R_4 + 0.3$,
$eta = \frac{R_4}{R_2}$,
$\lambda = \frac{d}{R_2}$,
$\alpha = \frac{R_3}{\delta} = k R_2$:

a) phase L_1;
b) phase L_2;
c) phase L_3
In the Figure 6 presented is the magnetic field distribution along sections A, B, C, D.

a)
Fig. 6 cont. Magnetic field distribution along sections a) A, b) B, c) C, d) D
4. Conclusions

The paper presents an analytical method for determining the magnetic field in the three–phase high–current busduct of circular cross–section geometry. The mathematical model takes into account the skin effect and the proximity effects. To verify the analytical formulae authors performed computations by means of the finite element method.

The magnetic field around the high–current busducts are usually calculated numerically with the use of a computer. However, the analytical calculation of the electromagnetic field is preferable, because it results in a mathematical expression for showing its dependences on various parameters of the line arrangement.

From Figure 3 and 6 results that the magnetic field calculated on the basis analytical formulae is lower than the magnetic field determined by FEMM software. These differences could be caused that the phase conductors in the analytical method are treated as the filaments.

References

(Received: 29. 09. 2016, revised: 16. 11. 2016)